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The joint probability distribution function method is applied to multiple-

wavelength anomalous dispersion (MAD) powder data. The distributions are

calculated by assuming prior knowledge of the scattering intensities at two

wavelengths and of the anomalous-scatterer substructure. The method leads to

formulas estimating the full structure phases and their reliability. The procedure

has been applied to two structures, one unknown and one known; the second

was used as a control for the phasing procedure. In spite of the unavoidable peak

overlapping in the diffraction pattern, the formulas proved to be very effective.

Combined with a new algorithm for phase extension, they enabled the solution

of both crystal structures.

1. Notation

The following notation has been used in this article.

N: No. of atoms in the unit cell.

a: No. of anomalous scatterers in the unit cell.

fj ¼ f 0
j þ�fj þ if 00j ¼ f 0j þ if 00j : scattering factor of the jth atom.

f 0 is its real part, f 00 is its imaginary part. The thermal factor is

included.

Fþ = jFþj expði�þÞ = Fh =
PN

j¼1 fj expð2�ihrjÞ: structure factor

of the reflection h.

Eþ = Fþ=ð"
P

NÞ
1=2 = R expði�þÞ = Aþ þ iBþ: normalized

structure factor of the reflection h.

F� ¼ jF�j expði��Þ ¼ F�h ¼
PN

j¼1 fj expð�2�ihrjÞ: structure

factor of the reflection �h.

E� ¼ F�=ð"
P

NÞ
1=2
¼ G expði��Þ ¼ A� þ iB�: normalized

structure factor of the reflection �h.

Fþp ;F�p ;Eþp ¼ Aþp þ iBþp ;E�p ¼ A�p þ iB�p denote the values

for the pth wavelength.

Foa ¼ jFoaj expði�oaÞ ¼
Pa

j¼1 f 0
j expð2�ihrjÞ: structure factor of

the anomalous scatterers (anomalous-scattering contribution

excluded).

Eoa ¼ Foa=ð"
P

oaÞ
1=2
¼ Roa expði�oaÞ ¼ Aoa þ iBoa: normal-

ized structure factor of the anomalous scatterers (anomalous-

scattering contribution excluded).

E��p : complex conjugate of E�p .

In: modified Bessel function of order n.

D1ðXÞ ¼ I1ðXÞ=I0ðXÞ.

2. Introduction

While MAD (multiple-wavelength anomalous dispersion)

techniques are very popular for protein crystallography, so far

they have not been very useful for powder crystallography.

This is mainly due to the unavoidable peak overlapping in

powder patterns. Indeed:

(a) The reflections Fþ and F� systematically overlap:

consequently, anomalous differences jFþj2 � jF�j2 cannot be

measured and only the intensities Ih ¼ jF
þj

2
þ jF�j2 are

experimentally available.

(b) Dispersive differences between ðjFþ2 j
2
þ jF�2 j

2
Þ and

ðjFþ1 j
2
þ jF�1 j

2
Þ may be estimated from the experiment.

However, the estimates may be heavily affected by the casual

and/or by the systematic overlapping present in the two

diffraction patterns.

The apparently minor experimental information provided

by a powder diffraction experiment has discouraged the use of

MAD and its applications. So far we can only quote the

pioneering contributions by Prandl (1990, 1994), Gu et al.

(2000) and Helliwell et al. (2005). In a more recent paper

(Altomare et al., 2009; from now on denoted as paper I) the

probabilistic bases of the method were established. In parti-

cular it was shown that when a single species of anomalous

scatterer is present:

(a) the distribution PðEoa;Eþ1 ;Eþ2 ;E�1 ;E�2 Þ, which is

fundamental to the application to single-crystal data (Burla et



al., 2002, 2003), cannot be useful for powder data, owing to the

fact that Bijvoet pairs cannot be separately estimated;

(b) Ep ¼ ð1=2ÞðEþp þ E��p Þ is a more suitable random vari-

able, particularly when jE00jþ (the anomalous component of

jEþj using f 00 as scattering factor) is negligible with respect to

jEþj and jE��j. This occurs when f 00 is sufficiently small and/or

when jEþp j and jE��p j are sufficiently large. In this case, the

phase values ’þp and ’��p differ by few degrees, and the

following approximation holds:

jEpj ’ ð1=2ÞðjEþp j þ jE
��
p jÞ:

Accordingly, in paper I the joint probability distribution

function PðEoa;E1;E2Þ was derived, from which the condi-

tional distribution PðRoajR1;R2Þ and therefore the value of

hRoajR1;R2i was obtained. This value may be used as input for

Patterson and direct methods to find the anomalous-scatterer

substructure.

The method was successfully applied to two sets of powder

diffraction data, the first originally solved by Janczak &

Kubiak (2002) via a single-crystal experiment [iron(II)

phthalocyanine bis(pyridine), C32H16N8Fe(C5H5N)2, a = 9.576,

b = 19.929, c = 9.179 Å, � = 111.7�, space group P21/c, Z = 2;

from now on indicated as IRON2], the second originally

solved by the method described here [trans-dichloride-

diacetateammine(1-adamantylamine)platinum(IV), C14H26-

N2O4Cl2Pt; a = 11.100, b = 13.981, c = 6.352 Å, � = 102.3, � =

104.0, � = 77.5�, space group P1; from now on indicated as

PLAT4].

In this paper we describe a probabilistic method for finding

the full structure given the anomalous substructure. The

method is derived for the acentric case: the final formulas may

be also extended to the centric case, as shown by our appli-

cations to IRON2 and PLAT4. To simplify the calculations we

neglect the effects of f 00 on Ep.

3. The joint probability distribution P(R1, R2, R3, u1, u2,
u3)

In the following, for simplicity, the variable

Ep ¼ ð1=2ÞðEþp þ E��p Þ ¼ Ap þ iBp ¼ Rp expði’pÞ, p ¼ 1; 2,

will be denoted by the simpler symbol Ep ¼ Ap þ iBp

¼ Rp expði’pÞ, p ¼ 1; 2. Neglecting the effects of f 00 on Ep,

p ¼ 1; 2, allows us to use the following simplified mathema-

tical model:

A1 ¼
PN
j¼1

f 0
j cosð2�hrjÞ þ j�1j cos �1

" #� P
1

� �1=2

B1 ¼
PN
j¼1

f 0
j sinð2�hrjÞ þ j�1j sin �1

" #� P
1

� �1=2

A2 ¼
PN
j¼1

gj cosð2�hrjÞ þ j�2j cos �2

" #� P
2

� �1=2

B2 ¼
PN
j¼1

gj sinð2�hrjÞ þ j�2j sin �2

" #� P
2

� �1=2

A3 ¼
Pa

j¼1

�fj cosð2�hrjÞ þ j�3j cos �3

" #� P
3

� �1=2

B3 ¼
Pa

j¼1

�fj sinð2�hrjÞ þ j�3j sin �3

" #� P
3

� �1=2

where

gj ¼ f 0
j þ�fj for j ¼ 1; . . . a; gj ¼ f 0

j for j ¼ aþ 1; . . . ;N;

P
1 ¼

PN
j¼1

f 02

j ;
P

2 ¼
PN
j¼1

g2
j ¼

P
1þ

P
3þ 2

P
13;

P
3 ¼

Pa

j¼1

�f 2
j ;

P
13 ¼

Pa

j¼1

f 0
j �fj:

E3 ¼ A3 þ iB3 represents the normalized structure factor of

the model substructure. �p, p ¼ 1; 2, is the cumulative

complex error arising from measurements and from the full

pattern decomposition procedure; �3 represents the error on

the anomalous substructure model. The role of the errors is

essential for the usefulness of the mathematical approach.

Indeed, if �p; p ¼ 1; . . . ; 3, are assumed to be zeros, the joint

probability PðR1;R2;R3; ’1; ’2; ’3Þ reduces to a Dirac delta

function, owing to the fact that E3 exactly equals E2 � E1.

In accordance with the above definitions, �f may be

assumed to be positive or negative: for example, if the first

wavelength is chosen far enough from the absorption edge (to

make the anomalous corrections to the structure factor

negligible) and the second is chosen at the dip for f 0, then �f is

assumed to be negative; vice versa if the first wavelength is at

the dip for f 0 and the second far away from the absorption

edge then �f is assumed to be positive.

In polar variables, the joint probability distribution

PðR1;R2;R3; ’1; ’2; ’3Þ is given by

PðR1;R2;R3; ’1; ’2; ’3Þ

¼ ðdet KÞ�1=2 Q3
j¼1

ð��1Rj=ejÞ

� exp �
P3

i¼1

�iiR
2
i � 2

P3

i;j¼1

�ijRiRj cosð’i � ’jÞ

" #
; ð1Þ

where

ej ¼ ð1þ 	
2
j Þ; j ¼ 1; . . . ; 3; 	2

j ¼ hj�jj
2
i=
P

j; j ¼ 1; . . . ; 3;

P
12 ¼

P
1þ

P
13; 	12 ¼

P
12 =

P
1

P
2

� �1=2
;

	13 ¼
P

13 =
P

1

P
3

� �1=2
;

P
23 ¼

Pa

j¼1

gj�fj ¼
P

13þ
P

3; 	23 ¼
P

23 =
P

2

P
3

� �1=2
;

K ¼
L 0

0 L

����
����; K�1

¼
L�1 0

0 L�1

����
����;

det K¼ðe1e2e3 � e1	
2
23 � e2	

2
13 � e3	

2
12 þ 2	12	13	23Þ

2=ðe1e2e3Þ
2;
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L ¼
1 	12=ðe1e2Þ

1=2 	13=ðe1e3Þ
1=2

	12=ðe1e2Þ
1=2 1 	23=ðe2e3Þ

1=2

	13=ðe1e3Þ
1=2 	23=ðe2e3Þ

1=2 1

������
������;

�11 ¼
1

e1e2e3 det L
1�

P2
23P

2

P
3

 !
;

�22 ¼
1

e1e2e3 det L
1�

P2
13P

1

P
3

 !
;

�33 ¼
1

e1e2e3 det L
1�

P2
12P

1

P
2

 !
;

�12 ¼
1

e1e2e3 det L

P2
13þ

P
3

P
13 ð1� e3Þ �

P
1

P
3 e3

ð
P

1

P
2Þ

1=2 P
3

" #
;

�13 ¼
�
1=ðe1e2e3 det LÞ

��P2
13ð1� 2e2Þ þ

P
3

P
13 ð1� e2Þ

þ
P

1

P
13 ð1� e2Þ þ

P
1

P
3

���
ð
P

1

P
3Þ

1=2 P
2

�
¼
�
1=ðe1e2e3 det LÞ

��P
1

P
3 � e2

P2
13þ

P
13ð1� e2Þ

�
�P

13þ
P

1þ
P

3

����
ð
P

1

P
3Þ

1=2 P
2

�
¼
�
1=ðe1e2e3 det LÞ

��
ð
P

1

P
3�

P2
13 Þ

þ ð1� e2Þ
P

2

P
13

���
ð
P

1

P
3Þ

1=2 P
2

�
;

�23 ¼
1

e1e2e3 det L

P2
13�

P
1

P
3 e1 þ

P
1

P
13 ð1� e1Þ

ð
P

2

P
3Þ

1=2 P
1

" #
:

4. Phasing the crystal-structure reflections

In order to associate phase values to the full structure

reflections we need to derive the conditional distributions

Pð’1jR1;R2;R3; ’3Þ or Pð’2jR1;R2;R3; ’3Þ. Such distributions

cannot be obtained from equation (1) without some approx-

imations. In accordance with Giacovazzo & Siliqi (2001) the

approximation ’1 ’ ’2 may be introduced, which is fully

justified if R1 and R2 are sufficiently large. Then equation (1)

becomes

P R1;R2;R3; ’1; ’3ð Þ ’ 2�
Q3
j¼1

ð��1Rj=ejÞðdet KÞ�1=2

� exp

�
�
P3

i¼1

�iiR
2
i þG cosð’1 � ’3Þ

	
;

where

G ¼ �2ð�13R1 þ�23R2ÞR3; ð2Þ

and the following von Mizes conditional distribution arises:

P ’1jR1;R2;R3; ’3ð Þ ’ ½2�I0ðGÞ�
�1 exp½G cosð’1 � ’3Þ�: ð3Þ

From equation (2) the following rule may be deduced: if

�13R1 þ�23R2 is negative the probabilistic relation ’1 ’ ’3 is

supported. If �13R1 þ�23R2 is positive the relation

’1 ’ ’3 þ � is more probable. The probabilities are sharper

when R3 is large.

To provide a simple qualitative insight into the signs and the

moduli of the �ij we simplify their numerators by assuming

that ej for j ¼ 1; 2; 3 are sufficiently close to unity: we find

�12 ¼ �
1

e1e2e3 det L

Zc

ð
P

1

P
2Þ

1=2 P
3

;

�13 ¼
1

e1e2e3 det L

Zc

ð
P

1

P
3Þ

1=2 P
2

;

�23 ¼ �
1

e1e2e3 det L

Zc

ð
P

2

P
3Þ

1=2 P
1

;

where

Zc ¼
P

1

P
3�

P2
13 :

If, as frequently occurs, the scattering power of the anomalous

substructure is sufficiently smaller than that of the full struc-

ture, then:

(i) Zc > 0;

(ii) �13 is positive while �12 and �23 are negative;

(iii) �12=�13 ¼ �ð
P

2 =
P

3Þ
1=2, �13=�23 ¼ �ð

P
1 =
P

2Þ
1=2,

�12=�23 ¼ ð
P

1 =
P

3Þ
1=2;

(iv) �23 ’ ��13 and equation (2) reduces to

G ’ 2�13ðR2 � R1ÞR3: ð4Þ

In other words, under the above assumptions, the reliability of

the phase indication ’1 ’ ’3 depends on the modulus R3 and

on the difference R2 � R1 [see Giacovazzo & Siliqi (2001) for

a related formula]: ’1 ’ ’3 if R2 >R1, ’1 ’ ’3 þ � if R2 <R1.

It is worth noting that if �f is assumed to be negative (i.e.,

when the second wavelength is chosen at the dip for f 0), thenP
1 >

P
2 and j�12j> j�13j> j�23j:

If �f is assumed to be positive (i.e., when the first wavelength

is at the dip for f 0), thenP
2 >

P
1 and j�12j> j�23j> j�13j:

The above results are obtained by supposing ’1 ’ ’2. This is

not always true, and therefore we look for a more accurate

approach. We first integrate equation (1) on ’2: we have

PðR1;R2;R3; ’1; ’3Þ

¼ 2�
Q3
j¼1

ð��1Rj=ejÞ det Kð Þ
�1=2

R1R2R3

� exp �
P3

i¼1

�iiR
2
i � 2�13R1R3 cos ’1 � ’3ð Þ

� 	
I0ðG13Þ;

where

G13 ¼ 2R2½�
2
12R2

1 þ�2
23R2

3 þ 2�12�23R1R3 cos ’1 � ’3ð Þ�
1=2:

We then use the following approximation (Giacovazzo, 1979):

I0½Q
2
1 þQ2

2 þ 2Q1Q2 cosð�� #Þ�1=2

¼ ½I0ðQ1ÞI0ðQ2Þ=I0ðQÞ� exp½Q cosð�� #Þ�;

where
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D1ðQÞ ¼ D1ðQ1ÞD1ðQ2Þ:

Accordingly

P R1;R2;R3; ’1; ’3ð Þ

¼ 2�
Y3

j¼1

��1Rj

ej


 �
I0ð2�12R1R2ÞI0ð2�23R2R3Þ

I0ðG13Þ

� det Kð Þ
�1=2exp �

P3

i¼1

�iiR
2
i þ S cos ’1 � ’3ð Þ

� 	
;

where

S ¼ ðQ� 2�13R1R3Þ ð5Þ

and

D1ðQÞ ¼ D1ð2�12R1R2ÞD1ð2�23R2R3Þ: ð6Þ

Since �12 and �23 have the same sign, Q is always positive. Let

us now calculate

P ’1jR1;R2;R3; ’3ð Þ ¼ ½2�I0ðSÞ�
�1 exp½S cos ’1 � ’3ð Þ� ð7Þ

from which

’1 ’ ’3 if S> 0; ’1 ’ ’3 þ � if S< 0: ð8Þ

To understand equations (5)–(8) let us suppose that 2�12R1R2

is very large and negative. Then, according to equation (6),

D1ð2�12R1R2Þ ’ �1, Q ’ �2�23R2R3, and S reduces to G, as

defined by equation (2). The above result makes it clear that

the assumption ’1 ’ ’2 is only justified if 2�12R1R2 is large

enough.

If R1 and R3 are large while R2 is small, then Q< 2�13R1R3

and the relation ’1 ’ ’3 þ � is suggested, in accordance with

equation (4).

Let us now suppose that 2�23R2R3 is very large and nega-

tive, as occurs in the most favourable cases. Then

D1ð2�23R2R3Þ ’ �1 and Q ’ �2�12R1R2: in this case we

have

S ¼ �2�12R1R2 � 2�13R1R3 ¼ �2ð�13R3 þ�12R2ÞR1:

The most probable phase relationship will be ’1 ’ ’3 þ � or

’1 ’ ’3 according to whether �13R3 þ�12R2 > 0 or

�13R3 þ�12R2 < 0, respectively. As we see, in disagreement

with equation (2), the choice between the two alternatives no

longer depends on the difference between R1 and R2 (via the

value of �13R1 þ�23R2), but on the difference between R2

and R3 (via the value of �13R3 þ�12R2).

Since equations (5)–(8) have general validity, it is expected

that they can provide better estimates than equations (2) and

(3).

5. Simplified expressions for phase estimations

The phasing formulas described in the preceding section

critically depend on the errors e1; e2; e3. For example, �12, �13

and �23 values vary with e3; e2; e1: as a consequence G and S

values, as defined by equations (2) and (5), respectively, will

depend not only on R1, R2, R3, but also on e1; e2; e3. In

particular, G and S may change their sign in specific circum-

stances. Such behaviour is in principle correct: however peak

overlapping, possible preferred orientation and difficult

background definition can make the error estimation quite a

serious problem. In particular the Le Bail (Le Bail et al., 1988)

decomposition approach does not associate weights to

decomposed intensities; the Pawley method, on the other

hand, provides weights which may be used in the structure-

refinement step (David, 2004). Suitable weights for least-

squares refinement were also described by Altomare et al.

(2006).

In general, full control of the errors in powder crystal-

lography is more difficult than for single-crystal data.

Accordingly, it may be useful to simplify the phase relation-

ships derived in x4 in order to make them less critically

dependent on the errors and, simultaneously, simpler and

faster. In Appendix A we show that

e1e2e3 detðLÞ ’ e3ðe1e2 � 1ÞZc

P
2

� P
1

P
2

P
3

� �
:

Introducing the above relation in equation (2) gives

G ¼ �2ð�13R1 þ�23R2ÞR3

¼
2
P1=2

3

e3ðe1e2 � 1Þ
P

2

P1=2
2 R2 �

P1=2
1 R1

� 

R3

¼
2

e3ðe1e2 � 1Þ
P

2

ðjF2j � jF1jÞjF3j

¼
2

e3ðe1e2 � 1Þ
ðR2 � R01ÞR

0
3; ð9Þ

where R02 and R03 are structure factors pseudonormalized with

respect to
P1=2

2 . Equation (9) shows that the reliability para-

meter G assumes a very simple algebraic form when expressed

in terms of structure factors or in terms of pseudonormalized

structure factors. The expected value of ’1 depends on the

difference ðjF2j � jF1jÞ; its reliability increases with jF3j and is

modulated by the error function ½e3ðe1e2 � 1Þ
P

2�
�1. The

larger e1; e2; e3 are, the smaller the reliability of the phase

indication is. Equation (9) also suggests that the accurate

scaling of the intensities collected at the two wavelengths is a

necessary condition for the success of the approach.

If we apply the same technique to simplify equations (5)–(7)

we find that S is still defined by them, but now

2�12R1R2 ¼ �
2

e3ðe1e2 � 1Þ
P

2

jF1F2j ¼ �
2

e3ðe1e2 � 1Þ
R01R2;

ð10aÞ

2�13R1R3 ¼
2

e3ðe1e2 � 1Þ
P

2

jF1F3j ¼
2

e3ðe1e2 � 1Þ
R01R03;

ð10bÞ

2�23R2R3 ¼ �
2

e3ðe1e2 � 1Þ
P

2

jF2F3j ¼ �
2

e3ðe1e2 � 1Þ
R2R03:

ð10cÞ

6. Applications

The probabilistic formulas derived in xx4 and 5 were imple-

mented in a modified version of EXPO2004 (Altomare et al.,
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2004): the procedure was applied to IRON2 and PLAT4 using

as prior information the anomalous substructures obtained via

the approach described in paper I. In particular, we used in the

formulas the experimental jF1j and jF2j values obtained by the

EXPO2004 default full pattern decomposition procedure

(Le Bail approach), and the jF3j values calculated from the

known substructures. To be consistent, we report in Table 1

the experimental data quoted in Table 1 of paper I, along

with the experimental data resolution (RES) for each wave-

length.

In order to estimate the phases ’1 we used both equations

(2)–(3) and (5)–(7) derived in x4 and the corresponding

simplified expressions [via equations (9) and (10)] obtained in

x5. Since the two approaches did not show remarkable

differences, for the sake of simplicity we will describe the

results obtained via the simplified formulas.

The full phasing process will be described as steps.

(1) Phasing via anomalous dispersive data. In paper I the

dispersive data were used to locate the anomalous scatterers:

for IRON2 the Fe atom was found in the special position (0, 0,

0) and for PLAT4 Pt was located at (0.667, 0.311, 0.049).

We applied equation (9) to the 332 reflections lying in both

measured powder patterns for IRON2 (i.e. up to 1.72 Å

resolution): in the absence of a sound weighting criterion we

assumed e1; e2; e3 constantly equal to 1.05. 168 reflections were

phased, with average phase error (with respect to the phases

calculated from the refined crystal structure) hj�’ji ¼ 25� [it

may be worth noting that the 168 phased reflections satisfy the

relation k + l = 2n: indeed, since Fe is on an inversion centre, it

does not contribute to the reflections with k + l = 2n + 1, no

matter what wavelength is used]. The cumulative distribution

versus G of the phase error is shown in Table 2.

The calculations made for IRON2 were repeated for

PLAT4. We applied equation (9) to the 1289 reflections lying

in both measured powder patterns (i.e. up to 1.14 Å resolu-

tion): 1228 reflections were phased with hj�’ji ¼ 21�. In Table

3 we show the cumulative distribution versus G of the phase

error.

Tables 2 and 3 indicate that the phase error distribution has

the fortunate property that the wrong phase estimates are

mostly confined to low values of G.

The supplementary calculations necessary to derive equa-

tions (5)–(7) are aimed at eliminating the assumption ’1 ’ ’2,

which was at the basis of equations (2) and (3). Equations (5)–

(7) were then simplified via the relationships in equation (10)

to take into account the uncertainty of the weighting criterion.

We applied the simplified version of equations (5)–(7) to

IRON2 and PLAT4. The cumulative phase error distributions

versus S are shown in columns 6 and 7 of Table 2 and in

columns 6 to 9 of Table 3: the use of the reliability parameter S

provides slightly better results (i.e. the total number of wrong

phase estimates is slightly smaller).

(2) Phase extension. Dispersive scattering allowed us to

phase IRON2 reflections up to 1.72 Å and PLAT4 reflections

up to 1.14 Å. To refine and extend phases we first applied the

standard EXPO Fourier recycling procedure (Altomare et al.,

2006). For PLAT4 the phasing process was extended up to

1.02 Å and the procedure ended with hj�’ji ¼ 22� for 1826

reflections: the corresponding electron density showed 15 out

of 23 peaks with hdi = 0.27 Å (hdi is the average distance

between the experimental and the published atomic posi-

tions).

The application of the same techniques to IRON2 (phase

extension from 1.72 to 1.54 Å) provided a mean phase error

hj�’ji ¼ 84� for 464 reflections. No useful electron-density

map was provided: in practice the standard EXPO Fourier

recycling procedure spoils the extremely good phase estimates

obtained via anomalous dispersive pairs. It was, however,

noticed that the reflections with k + l = 2n + 1 (to which Fe

does not contribute) were all phased with a very small relia-

bility parameter. We then introduced the following new

algorithm:

(a) Triplet invariants are calculated among the strongest

reflections (NSTRONG = 220).

(b) A tangent procedure relying on the triplets in (a) is

applied, by including into the starting set the phases of the

reflections with k + l = 2n and five symbols, represented by a

magic integer sequence (Main, 1978). The procedure auto-

matically selects the symbols among the subset of reflections

for which k + l = 2n + 1. The corresponding trial phases are

used for extending the phasing process: spoiling of the

original phase estimates is avoided by holding fixed the 100

more reliable phases determined via anomalous dispersion

effects.

(c) The phases obtained at the end of step (b) are merged

with the estimates obtained by equations (5)–(7).

(d) The resolution bias correction procedure (Altomare et

al., 2008) is applied to the phases obtained at step (c). The

algorithm cyclically corrects the truncation effects in any

calculated electron-density map.

At the end of step (d) 464 phases were determined with

hj�’ji ¼ 34�. In the electron-density map 27 peaks out of 27

could be found with an average distance from the correct

positions hdi = 0.31 Å. It is worth noting the important role of

the resolution bias correction procedure: if step (d) is omitted,

then 261 phases were determined with hj�’ji ¼ 22� and only

15 peaks in the final electron-density map are correctly posi-

tioned, with hdi = 0.34 Å.

(3) Structure completion and refinement. The Rietveld

method (Rietveld, 1969) was used to complete and refine both

test structures.
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Table 1
Experimental data.

For each test structure the following information is given: selected
wavelengths, literature values for �f and f 00 expected at the remote and at
the dip (for f 0) wavelengths, the experimental 2� ranges (RAN), the
corresponding number of reflections (NREF), and the experimental data
resolution (RES).

Code 
 (Å) �f f 0 0 RAN (2�) (�) NREF RES (Å)

IRON2 1.07 0.0 0.0 1.0–40.9 464 1.54
IRON2 1.74 �8.0 0.6 1.0–60.9 332 1.72
PLAT4 0.95 0.0 0.0 1.0–55.9 1826 1.02
PLAT4 1.07 �16.0 4.0 1.0–55.9 1289 1.14



7. Postmortem analysis

It may be worth analyzing a posteriori the reasons condi-

tioning the failure or the success of the method in order to

derive useful suggestions for future work. We first notice that

while accurate intensity measurements for single-crystal data

are mandatory for the success of single-wavelength anomalous

dispersion–multiple-wavelength anomalous dispersion (SAD–

MAD) techniques (relative errors close to 5% may be

critical), the need for such accuracy seems less severe for

powder data if one takes into account the fact that the full

pattern decomposition introduces large errors in the moduli

estimates. Indeed the crystallographic residual between the

true moduli and the moduli obtained by full pattern decom-

position is usually large, depending on the structure size and

complexity, the space-group symmetry, the experimental

diffraction technique and the measurement angle 2�. To clarify

the question we calculate for each pair of variables (x, y) two

types of residual,

RC ¼
P

h

jjyhj � jxhjj


 ��P
h

jyhj

and RCS ¼
P

h

jyhj � jxhj


 ��P
h

jyhj:

The first is the classical crystallographic residual,

the second takes into account the signs of the

differences between x and y. In Fig. 1 we show the

RCi and RCSi values for the pairs (Rit, Rid) for

i = 1, 2, versus the interplanar spacing d: they are

calculated for batches of 100 reflections sharing

the same 2� interval. Rit is the normalized

structure-factor modulus as calculated from the

refined structure, Rid is that obtained via full

pattern decomposition. For both wavelengths

RCi increases with increasing (decreasing) values

of 2� (of d): at large 2� values Rit and Rid are

weakly correlated for the two wavelengths.

RCSi lies around zero for both wavelengths, which

indicates that Rit and Rid are on a similar

scale, except for some 2� intervals where

systematic overestimation or underestimation of one of the

two variables is made.

In Fig. 2 we show the residuals RC� and RCS� for the

variables y ¼ ðR2t � R01tÞ and x ¼ ðR2d � R01dÞ [see equation

(9)]. RC� is always far from zero and increases with increasing

values of 2�. Since the estimate of ’1 depends on the value of

ðR2d � R01dÞ [i.e. if the sign of ðR2d � R01dÞ changes, then the ’1

estimate changes by �], the dramatically large values of RC�

should not allow good phase estimates, in contrast with the

success of our procedure. To explain this contradictory

feature, we show in Fig. 2 the percentage (%inv) of reflections

(per batch) for which the sign of ðR2d � R01dÞ is opposite to that

of ðR2t � R01tÞ. We see that, in spite of the large RC� values, a

remarkable sign inversion occurs only for two batches: those

corresponding to the d ’ 1 Å and d ’ 1.4 Å intervals where

RCS2 is far from zero. This coincidental occurrence suggests

that both the lack of experimental information at high-

resolution 2� intervals and a wrong background estimate may

be responsible for the phase error.
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Figure 1
RC1, RC2, RCS1 and RCS2 versus the interplanar spacing d for PLAT4 for
each batch of 100 reflections sharing the same 2� interval.

Table 2
Cumulative distributions of the phase error versus ARG for IRON2.

In columns 2 to 5 equations (2) and (3), simplified via equation (9), are applied. The columns
‘Negative relationships’ and ‘Positive relationships’ refer to reflections for which G [and
therefore hcosð’1 � ’3Þi] is negative or positive, respectively. For each value of ARG the
number of relationships with |G| > ARG (No.) and the corresponding average phase error
hj�’ji are given. In columns 6 and 7 equations (5) to (7), simplified via equations (10), are
applied. In this case only negative (i.e. reflections for which S is negative) relationships are
obtained. For each value of ARG the number of relationships with |S| > ARG (No.) and the
corresponding average phase error hj�’ji are given.

Equations (2) and (3) Equations (5) to (7)

Negative relationships Positive relationships Negative relationships

ARG No. h �’
�� ��i (�) No. h �’

�� ��i (�) No. h �’
�� ��i (�)

0.0 143 5 25 137 168 11
2.0 121 4 12 150 156 9
4.0 95 4 8 180 141 6
6.0 67 3 2 180 117 6
8.0 50 4 95 4

10.0 35 0 81 2
12.0 24 0 59 3
14.0 14 0 41 4

Figure 2
RC�, RCS� and %inv for PLAT4 for each batch of 100 reflections
sharing the same 2� interval.



In Fig. 3(a) we show, for PLAT4, the 2� interval 37.5–39.9�,

corresponding to 1.48–1.40 Å in terms of resolution, of the 
1

PLAT4 experimental powder diffraction profile. The blue line

describes the polynomial representation of the background as

automatically estimated by the modified version of

EXPO2004. The vertical blue bars in the lower part of the

figure correspond to the positions of the reflections falling in

that interval. It is evident that the background model is not

accurate: its overestimation causes the underestimation of the

reflection intensities obtained by profile decomposition, with

consequent large errors in the R1d estimates.

In Fig. 3(b) we show the 2� interval 52.0–55.9�, corre-

sponding to 1.22–1.44 Å resolution, of the 
2 PLAT4 experi-

mental powder diffraction profile. Owing to peak overlapping,

uncertainty of the background and atomic scattering decay,

the signal is very noisy: large errors on the R2t estimates are

expected, as statistically testified in Fig. 1.

From the above observations the following clues may be

obtained:

(a) Synchrotron radiation plays a fundamental role in this

technique, because it allows wavelength tuning and reduces

the peak overlapping.

(b) The systematic overestimation or underestimation of

the diffraction intensities does not necessarily lead to a sign

inversion [i.e. when the sign of (R2d � R01d) is opposite to that

of (R2t � R01t)]. Quite frequently the full pattern decomposi-

tion mechanism overestimates or underestimates reflection

intensities at both wavelengths, owing to the similarities of the

two experimental diffraction profiles. As a consequence,

moderately large values of RC� are still compatible with good

phase estimates.

(c) The correctness of the background modelling is much

more critical for multi-wavelength than for one-wavelength

powder crystallography. Indeed, in the first case the correct-

ness of the phase assignment may depend on quite small

intensity differences rather than on the full intensities.

(d) The signal-to-noise ratio should be carefully evaluated

before deciding which experimental 2� interval should be

included in the calculations. We checked that of the 34 positive

relationships with G > 1.4 wrongly estimated via equations (2)

and (3), six fall in the interval shown in Fig. 3(a) and 27 belong

to the final part of the experimental profile, shown in Fig. 3(b).

(e) Since large peak overlapping and smaller signal-to-noise

ratio weaken the efficiency of the full pattern decomposition,
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Figure 3
Experimental powder diffraction profiles for PLAT4 for: (a) the 2�
interval 37.5–39.9�, corresponding to 1.40–1.48 Å in terms of resolution
(
1 wavelength); (b) the final 2� interval 52.0–55.9�, corresponding to
1.22–1.44 Å resolution (
2 wavelength). The blue line shows the
polynomial representation of the background.

Table 3
Cumulative distributions of the phase error versus ARG for PLAT4.

In columns 2 to 5 equations (2) and (3), simplified via equation (9), are applied. The columns ‘Negative relationships’ and ‘Positive relationships’ refer to
reflections for which G [and therefore hcosð’1 � ’3Þi] is negative or positive, respectively. For each value of ARG the number of relationships with |G| > ARG
(No.) and the corresponding average phase error hj�’ji are given. In columns 6 to 9 equations (5) to (7), simplified via equations (10), are applied. The columns
‘Negative relationships’ and ‘Positive relationships’ refer to reflections for which S [and therefore hcosð’1 � ’3Þi] is negative or positive, respectively. For each
value of ARG the number of relationships with |S| > ARG (No.) and the corresponding average phase error hj�’ji are given.

Equations (2) and (3) Equations (5) to (7)

Negative relationships Positive relationships Negative relationships Positive relationships

ARG No. h �’
�� ��i (�) No. h �’

�� ��i (�) No. h �’
�� ��i (�) No. h �’

�� ��i (�)

0.0 1122 8 106 161 1185 8 43 147
2.0 815 1 44 180 938 2 8 180
4.0 592 0 24 180 785 0 3 180
6.0 397 0 18 180 627 0
8.0 265 0 13 180 495 0

10.0 132 0 9 180 356 0
12.0 63 0 6 180 230 0
14.0 34 0 143 0
16.0 18 0 78 0



an angle-dependent weighting scheme may be useful. We

modified the error parameters ei, i = 1, 2, 3, assumed to be

constant in the default applications described in x6, according

to the weighting scheme

ei ¼ 1:05½1þ ðsin2 �Þ=
2� for i ¼ 1; 2; 3: ð11Þ

We extended i up to 3 because the substructure model is

expected to provide larger errors for high-resolution reflec-

tions. The integration of equation (11) into equation (9) leads

to Table 4, where the cumulative distribution of the phase

error versus |G| is shown. Comparing it with the distribution

shown in Table 3 suggests that the wrong phase estimates are

now confined to smaller ARG values. For example, according

to Table 3 there are 13 wrong phase estimates among the most

reliable 265 phase relationships: in Table 4 there are only 8

wrong phase estimates among the most reliable 297 phase

relationships.

Two other additional features condition the success of the

procedure:

(i) The (resolution dependent) ratio
P

3 =
P

1, decisive for

finding the substructure: it was very favourable for both our

test cases, for which |�f | � 8. In cases where the anomalous

scatterers are not as heavy and the structure size is larger, the

ratio
P

3 =
P

1 may become critical.

(ii) The ratio ‘scattering power of the anomalous

substructure/scattering power of the full structure’: in both our

test cases this ratio was particularly high, but it becomes

critical when it is relatively small. Indeed, in this last case the

experimental noise may overcome the signal, with a conse-

quent increase in the percentage of sign inversions.

We leave this study to future investigations.

8. Conclusions

The method of joint probability distribution functions has

been successfully applied to two-wavelength powder data

affected by anomalous dispersion: assumptions were made

which allow one to disregard the f 00component. The mathe-

matical approach provided two types of formulas for esti-

mating the phases of a crystal structure when the anomalous

substructure is known. The first type [equations (2) and (3)]

requires an approximation that is not always guaranteed, the

second [equations (5)–(7)] is expected to be valid in more

general conditions. Both were simplified without loss of effi-

ciency by introducing useful approximations in the errors.

When applied to the experimental data of two crystal struc-

tures all the formulas provided useful phase estimations.

It is worth noting that since a general assumption allows one

to neglect the f 00 component, the final formulas derived above

may be applied to isomorphous replacement.

APPENDIX A
Explicit expression for e1e2e3 detðLÞ

In order to derive simpler formulas for phase estimation we

calculate the explicit expression of e1e2e3 detðLÞ. We obtain

e1e2e3 detðLÞ

¼ e1e2e3 e1e2e3

P
1

P
2

P
3 � e1

P2
23

P
1 � e2

P2
13

P
2

�
� e3

P2
12

P
3 þ 2

P
12

P
13

P
23

��
e1e2e3

P
1

P
2

P
3

� �
¼ f

P
1

P
3 e3ðe1e2 � 1Þ

P
1 þ e1ðe2e3 � 1Þ

P
3

�
þ2ðe1e2e3 � e1 � e3 þ 1Þ

P
13

�
�
P2

13 ðe1 þ e2 � 2Þ
P

1

�
þ ðe2 þ e3 � 2Þ

P
3þ2ðe2 � 1Þ

P
13

��� P
1

P
2

P
3

� �
:

ð12Þ

Equation (12) clearly shows that detðLÞ vanishes when ei ¼ 0

for i = 1, 2, 3, as theoretically anticipated in the main text. Each

of the terms in the numerator of equation (12) contains a

polynomial which depends on the ei values: each polynomial is

different from the others but all are non-negative definite, and

all increase when the ei’s increase. Since ei’s are supposed to be

small, we may approximate all the polynomials by a unique

non-negative expression, e.g. e3ðe1e2 � 1Þ. Then equation (12)

may be approximated by

e1e2e3 detðLÞ ’
P

1

P
3�

P2
13

� �
e3ðe1e2 � 1Þ

�
P

1þ
P

3þ 2
P

13

� �
=
P

1

P
2

P
3

� �
¼

P
1

P
3�

P2
13

� �
e3ðe1e2 � 1Þ

�
P

2 =
P

1

P
2

P
3

� �
¼ e3ðe1e2 � 1ÞZc

P
2 =

P
1

P
2

P
3

� �
;

where

Zc ¼
P

1

P
3�

P2
13

� �
:
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Table 4
Cumulative distributions of the phase error versus ARG for PLAT4 assuming ei = 1.05[1 + (sin2�)/
2] for i = 1, 2, 3.

See Tables 2 and 3 for details.

Equations (2) and (3) Equations (5) to (7)

Negative relationships Positive relationships Negative relationships Positive relationships

ARG No. h �’
�� ��i (�) No. h �’

�� ��i (�) No. h �’
�� ��i (�) No. h �’

�� ��i (�)

0.0 1122 8 106 161 1194 8 34 153
1.0 613 0 18 180 791 0 1 180
2.0 297 0 8 180 468 0
3.0 129 0 251 0
4.0 47 0 118 0
5.0 11 0 59 0
6.0 3 0 24 0
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